Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Pract Radiat Oncol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354977

RESUMO

PURPOSE: Radiopharmaceutical therapy (RPT) is a rapidly growing treatment modality. Though uncommon, patients may experience complications during their RPT treatment, which may trigger a rapid response from the hospital team. However, members of this team are typically not familiar with precautions for radiation safety. During these events, it is important to prioritize the patient's health over all else. There are some practices that can help minimize the risk of radiation contamination spread and exposure to staff while tending to the patient. METHODS AND MATERIALS: We formed a team to develop a standard protocol for handling patient emergencies during RPT treatment. This team consisted of an authorized user, radiation safety officer, medical physicist, nurse, RPT administration staff, and a quality/safety coordinator. The focus for developing this standardized protocol for RPT patient emergencies was 3-fold: (1) stabilize the patient; (2) reduce radiation exposure to staff; and (3) limit the spread of radiation contamination. RESULTS: We modified our hospital's existing rapid response protocol to account for the additional staff and tasks needed to accomplish all 3 of these goals. Each team member was assigned specific responsibilities, which include serving as a gatekeeper to restrict traffic, managing the crash cart, performing chest compressions, timing chest compressions, documenting the situation, and monitoring/managing radiation safety in the area. We developed a small, easy-to-read card for rapid response staff to read while they are en route to the area so they can be aware of and prepare for the unique circumstances that RPT treatments present. CONCLUSIONS: Though rapid response events with RPT patients are uncommon, it is important to have a standardized protocol for how to handle these situations beforehand rather than improvise in the moment. We have provided an example of how our team adapted our hospital's current rapid response protocol to accommodate RPT patients.

2.
J Appl Clin Med Phys ; 24(4): e13899, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36637862

RESUMO

Prostate-specific membrane antigen (PSMA) is a cell surface protein highly expressed in nearly all prostate cancers, with restricted expression in some normal tissues. The differential expression of PSMA from tumor to non-tumor tissue has resulted in the investigation of numerous targeting strategies for therapy of patients with metastatic prostate cancer. In March of 2022, the FDA granted approval for the use of lutetium-177 PSMA-617 (Lu-177-PSMA-617) for patients with PSMA-positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy. Therefore, the use of Lu-177-PSMA-617 is expected to increase and become more widespread. Herein, we describe logistical, technical, and radiation safety considerations for implementing a radiopharmaceutical therapy program, with particular focus on the development of operating procedures for therapeutic administrations. Major steps for a center in the U.S. to implement a new radiopharmaceutical therapy (RPT) program are listed below, and then demonstrated in greater detail via examples for Lu-177-PSMA-617 therapy.


Assuntos
Lutécio , Neoplasias de Próstata Resistentes à Castração , Compostos Radiofarmacêuticos , Humanos , Masculino , Lutécio/uso terapêutico , Próstata , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Resultado do Tratamento
3.
Pediatr Blood Cancer ; 69(12): e29996, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102748

RESUMO

BACKGROUND: There is growing interest among pediatric institutions for implementing iodine-131 (I-131) meta-iodobenzylguanidine (MIBG) therapy for treating children with high-risk neuroblastoma. Due to regulations on the medical use of radioactive material (RAM), and the complexity and safety risks associated with the procedure, a multidisciplinary team involving radiation therapy/safety experts is required. Here, we describe methods for implementing pediatric I-131 MIBG therapy and evaluate our program's robustness via failure modes and effects analysis (FMEA). METHODS: We formed a multidisciplinary team, involving pediatric oncology, radiation oncology, and radiation safety staff. To evaluate the robustness of the therapy workflow and quantitatively assess potential safety risks, an FMEA was performed. Failure modes were scored (1-10) for their risk of occurrence (O), severity (S), and being undetected (D). Risk priority number (RPN) was calculated from a product of these scores and used to identify high-risk failure modes. RESULTS: A total of 176 failure modes were identified and scored. The majority (94%) of failure modes scored low (RPN <100). The highest risk failure modes were related to training and to drug-infusion procedures, with the highest S scores being (a) caregivers did not understand radiation safety training (O = 5.5, S = 7, D = 5.5, RPN = 212); (b) infusion training of staff was inadequate (O = 5, S = 8, D = 5, RPN = 200); and (c) air in intravenous lines/not monitoring for air in lines (O = 4.5, S = 8, D = 5, RPN = 180). CONCLUSION: Through use of FMEA methodology, we successfully identified multiple potential points of failure that have allowed us to proactively mitigate risks when implementing a pediatric MIBG program.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Criança , Humanos , Radioisótopos do Iodo/efeitos adversos , 3-Iodobenzilguanidina/efeitos adversos , Planejamento da Radioterapia Assistida por Computador/métodos , Medição de Risco
4.
Adv Radiat Oncol ; 7(4): 100948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814852

RESUMO

Purpose: Yttrium-90 (90Y) radioembolization with an escalated dose has been shown to improve clinical outcomes compared with standard dose radioembolization, but there are few data on the local control of primary liver tumors. We reported the clinical outcomes of patients with unresectable primary liver tumors treated with 90Y radioembolization with an escalated dose. Methods and Materials: Clinical data of patients with unresectable hepatocellular carcinoma (HCC), cholangiocarcinoma (CC), and biphenotypic tumors (cHCC-CC) treated with radioembolization with an escalated dose (≥150 Gy) between 2013 and 2020 with >3 months follow-up were retrospectively reviewed. The primary endpoint was freedom from local progression. Clinical response was defined by Modified Response Evaluation Criteria in Solid Tumours and toxic effects were assessed using Common Terminology Criteria for Adverse Events version 5.0. Results: Fifty-three patients with HCC and 15 patients with CC/cHCC-CC were analyzed. The median dose delivered was 205 Gy (interquartile range, 183-253 Gy) and 198 Gy (interquartile range, 154-234 Gy) for patients with HCC and CC/cHCC-CC, respectively. The 1-year freedom from local progression rate was 54% (95% confidence interval [CI], 38%-78%) for patients with HCC and 66% (95% CI, 42%-100%) for patients with CC/cHCC-CC. For patients with HCC, United Network for Organ Sharing nodal stage 1 (P = .01), nonsolitary tumors (P = .02), pretreatment α-fetoprotein of >7.7 ng/mL (P = .006), and ≤268 Gy dose delivered (P = .003) were predictors for local progression on multivariate Cox analysis. No patients with HCC who received a dose >268 Gy had a local tumor progression. The 1-year overall survival for patients with HCC was 74% (95% CI, 61%-89%). After radioembolization, 5 (7%) patients had grade 3 ascites, and 4 (6%) patients had grade 3/4 hyperbilirubinemia. Conclusions: Treatment of unresectable primary liver tumors with 90Y radioembolization with an escalated dose was safe and well tolerated. Delivery of >268 Gy may improve local tumor control of HCC. Determination of the maximum tolerated dose needs to be performed in the context of future prospective dose-escalation trials to further evaluate the safety and efficacy of such an approach.

5.
Pract Radiat Oncol ; 12(4): 294-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35717043

RESUMO

Prostate-specific membrane antigen is a transmembrane protein found predominately on prostate epithelium and is expressed at high levels in prostate cancer. In this review, we discuss the background, clinical data, patient selection, side effects, and necessary resources to deliver lutetium-177 prostate-specific membrane antigen in the research setting, or as standard of care if approved by the United States Food and Drug Administration. Targeted radionuclide therapeutics require understanding of fundamental principles of radiobiology and physics, and radiation oncologists and medical physicists are well-suited to play an integral role in their delivery and treatment response monitoring as key components of a multidisciplinary care team.


Assuntos
Próstata , Neoplasias de Próstata Resistentes à Castração , Humanos , Lutécio/uso terapêutico , Masculino , Antígeno Prostático Específico , Radioisótopos/uso terapêutico
6.
Pract Radiat Oncol ; 12(4): 305-311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35717045

RESUMO

Neuroendocrine tumors (NETs) are a heterogeneous group of tumors that originate in endocrine tissues throughout the body. Though most are indolent, clinical outcomes vary greatly based on histologic differentiation and grade. Peptide receptor radionuclide therapy has emerged as a promising treatment for patients with locally advanced and/or metastatic disease refractory to standard of care treatment. The phase III NETTER-1 trial found that [177Lu] Lu-DOTA-[Tyr3]-octreotate improved disease-free survival versus octreotide alone for somatostatin receptor-positive gastroenteropancreatic NETs and had a favorable toxicity profile, leading to Food and Drug Administration approval. [177Lu] Lu-DOTA-[Tyr3]-octreotate is an important new treatment that expands the role of radiation in the treatment of NETs. Several important trials are ongoing to better elucidate the role of this treatment.


Assuntos
Lutécio , Tumores Neuroendócrinos , Radioisótopos , Humanos , Lutécio/efeitos adversos , Tumores Neuroendócrinos/radioterapia , Octreotida/efeitos adversos , Tomografia por Emissão de Pósitrons , Radioisótopos/efeitos adversos , Cintilografia , Compostos Radiofarmacêuticos/efeitos adversos
7.
Clin Transl Radiat Oncol ; 29: 47-53, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34136665

RESUMO

BACKGROUND: We present the first report comparing early toxicity outcomes with high-dose rate brachytherapy (HDR-BT) boost upfront versus intensity modulated RT (IMRT) upfront combined with androgen deprivation therapy (ADT) as definitive management for intermediate risk or higher prostate cancer. METHODS AND MATERIALS: We reviewed all non-metastatic prostate cancer patients who received HDR-BT boost from 2014 to 2019. HDR-BT boost was offered to patients with intermediate-risk disease or higher. ADT use and IMRT target volume was based on NCCN risk group. IMRT dose was typically 45 Gy in 25 fractions to the prostate and seminal vesicles ± pelvic lymph nodes. HDR-BT dose was 15 Gy in 1 fraction, delivered approximately 3 weeks before or after IMRT. The sequence was based on physician preference. Biochemical recurrence was defined per ASTRO definition. Gastrointestinal (GI) and Genitourinary (GU) toxicity was graded per CTCAE v5.0. Pearson Chi-squared test and Wilcoxon tests were used to compare toxicity rates. P-value < 0.05 was significant. RESULTS: Fifty-eight received HDR-BT upfront (majority 2014-2016) and 57 IMRT upfront (majority 2017-2018). Median follow-up was 26.0 months. The two cohorts were well-balanced for baseline patient/disease characteristics and treatment factors. There were differences in treatment sequence based on the year in which patients received treatment. Overall, rates of grade 3 or higher GI or GU toxicity were <1%. There was no significant difference in acute or late GI or GU toxicity between the two groups. CONCLUSION: We found no significant difference in GI/GU toxicity in intermediate-risk or higher prostate cancer patients receiving HDR-BT boost upfront versus IMRT upfront combined with ADT. These findings suggest that either approach may be reasonable. Longer follow-up is needed to evaluate late toxicity and long-term disease control.

8.
Adv Radiat Oncol ; 6(1): 100602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665488

RESUMO

PURPOSE: Our purpose was to describe the risk of radiation-induced brachial plexopathy (RIBP) in patients with breast cancer who received comprehensive adjuvant radiation therapy (RT). METHODS AND MATERIALS: Records for 498 patients who received comprehensive adjuvant RT (treatment of any residual breast tissue, the underlying chest wall, and regional nodes) between 2004 and 2012 were retrospectively reviewed. All patients were treated with conventional 3 to 5 field technique (CRT) until 2008, after which intensity modulated RT (IMRT) was introduced. RIBP events were determined by reviewing follow-up documentation from oncologic care providers. Patients with RIBP were matched (1:2) with a control group of patients who received CRT and a group of patients who received IMRT. Dosimetric analyses were performed in these patients to determine whether there were differences in ipsilateral brachial plexus dose distribution between RIBP and control groups. RESULTS: Median study follow-up was 88 months for the overall cohort and 92 months for the IMRT cohort. RIBP occurred in 4 CRT patients (1.6%) and 1 IMRT patient (0.4%) (P = .20). All patients with RIBP in the CRT cohort received a posterior axillary boost. Maximum dose to the brachial plexus in RIBP, CRT control, and IMRT control patients had median values of 56.0 Gy (range, 49.7-65.1), 54.8 Gy (47.4-60.5), and 54.8 Gy (54.2-57.3), respectively. CONCLUSIONS: RIBP remains a rare complication of comprehensive adjuvant breast radiation and no clear dosimetric predictors for RIBP were identified in this study. The IMRT technique does not appear to adversely affect the development of this late toxicity.

9.
Int J Radiat Oncol Biol Phys ; 110(4): 1200-1209, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662458

RESUMO

PURPOSE: To comprehensively characterize dosimetric differences between calculations with a commercial model-based dose calculation algorithm (MBDCA) and the TG-43 formalism in application to accelerated partial breast irradiation (APBI) with the strut-adjusted volume implant (SAVI) applicator. METHODS: Dose for 100 patients treated with the SAVI applicator was recalculated with an MBDCA for comparison to dose calculated via TG-43. For every pair of dose calculations, dose-volume histogram (DVH) metrics including V90%, V95%, V100%, V150%, and V200% for the PTV_EVAL were compared. Features were defined for each case including (1) applicator size, (2) ratio between PTV_EVAL contour and 1-cm rind surrounding SAVI applicator, (3) ratio between dwell time in central catheter and total dwell time, and (4) mean computed tomography (CT) number within the lumpectomy cavity. Wilcoxon rank sum tests were performed to test whether treatment plans could be stratified according to feature values into groups with statistically significant dosimetry differences between MBDCA and TG-43. RESULTS: For all DVH metrics, differences between TG-43 and MBDCA calculations were statistically significant (P < .05). Minimum (maximum) relative percent differences between the MBDCA and TG-43 for V90%, V95%, and V100% were -2.1% (0.1%), -3.1% (-0.1%), and -5.0% (-0.5%), respectively. The median relative percent difference in mean PTV_EVAL dose between the MBDCA and TG-43 was -3.9%, with minimum (maximum) difference of -6.5% (-1.8%). For V90%, V95%, and V100%, plan quality worsened beyond defined thresholds in 26, 23, and 31 cases with no instances of coverage improvement. Features 1, 2, and 4 were shown to be able to stratify treatment plans into groups with statistically significant differences in dosimetry metrics between MBDCA and TG-43. CONCLUSIONS: Investigated dose metrics for SAVI treatments were found to be systematically lower with MBDCA calculation in comparison to TG-43. Plans could be stratified according to several features by the magnitude of dosimetric differences between these calculations.


Assuntos
Algoritmos , Modelos Teóricos , Próteses e Implantes , Planejamento da Radioterapia Assistida por Computador/métodos , Braquiterapia/efeitos adversos , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria , Dosagem Radioterapêutica
11.
Brachytherapy ; 20(1): 237-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32819853

RESUMO

PURPOSE: To assist radiation oncology centers in implementing Lutetium-177-dotatate (177Lu) radiopharmaceutical therapy for midgut neuroendocrine tumors. Here we describe our workflow and how it was revised based on our initial experience on an expanded access protocol (EAP). METHODS: A treatment team/area was identified. An IV-pump-based infusion technique was implemented. Exposure-based techniques were implemented to determine completion of administration, administered activity, and patient releasability. Acute toxicities were assessed at each fraction. A workflow failure modes and effects analysis (FMEA) was performed. RESULTS: A total of 22 patients were treated: 11 patients during EAP (36 administrations) and 11 patients after EAP (44 administrations). Mean 177Lu infusion time was 37 min (range 26-65 min). Mean administered activity was 97% (range 90-99%). Mean patient exposures at 1 m were 1.9 mR/h (range 1.0-4.1 mR/h) post-177Lu and 0.9 mR/h (range 0.4-1.8 mR/h) at discharge, rendering patients releasable with instructions. Treatment area was decontaminated and released same day. All patients in the EAP experienced nausea, and nearly half experienced emesis despite premedication with antiemetics. Peripheral IV-line complications occurred in six treatments (16.7%), halting administration in 2 cases (5.6%). We transitioned to peripherally inserted central catheter (PICC)-lines and revised amino acid formulary after the EAP. The second cohort of 11 patients after EAP were analyzed for PICC-line complications and acute toxicity. Nausea and emesis rates decreased (nausea G1+ 61%-27%; emesis G1+ 23%-7%), and no PICC complications were observed. FMEA revealed that a failure in amino acid preparation was the highest risk. CONCLUSION: 177Lu-dotatate can be administered safely in an outpatient radiation oncology department.


Assuntos
Braquiterapia , Radioterapia (Especialidade) , Braquiterapia/métodos , Humanos , Lutécio/uso terapêutico , Radioisótopos , Compostos Radiofarmacêuticos
12.
J Appl Clin Med Phys ; 22(1): 59-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300664

RESUMO

PURPOSE: The annual quality assurance (QA) of Leksell Gamma Knife® (LGK) systems are typically performed using films. Film is a good candidate for small field dosimetry due to its high spatial resolution and availability. However, there are multiple challenges with using film; film does not provide real-time measurement and requires batch-specific calibration. Our findings show that active detector-based QA can simplify the procedure and save time without loss of accuracy. METHODS: Annual QA tests for a LGK Icon™ system were performed using both film-based and filmless techniques. Output calibration, relative output factors (ROF), radiation profiles, sector uniformity/source counting, and verification of the unit center point (UCP) and radiation focal point (RFP) coincidence tests were performed. Radiochromic films, two ionization chambers, and a synthetic diamond detector were used for the measurements. Results were compared and verified with the treatment planning system (TPS). RESULTS: The measured dose rate of the LGK Icon was within 0.4% of the TPS value set at the time of commissioning using an ionization chamber. ROF for the 8 and 4-mm collimators were found to be 0.3% and 1.8% different from TPS values using the MicroDiamond detector and 2.6% and 1.9% different for film, respectively. Excellent agreement was found between TPS and measured dose profiles using the MicroDiamond detector which was within 1%/1 mm vs 2%/1 mm for film. Sector uniformity was found to be within 1% for all eight sectors measured using an ionization chamber. Verification of UCP and RFP coincidence using the MicroDiamond detector and pinprick film test was within 0.3 mm at isocenter for both. CONCLUSION: The annual QA of a LGK Icon was successfully performed by employing filmless techniques. Comparable results were obtained using radiochromic films. Utilizing active detectors instead of films simplifies the QA process and saves time without loss of accuracy.


Assuntos
Radiocirurgia , Calibragem , Diamante , Dosimetria Fotográfica , Humanos , Radiometria
13.
J Appl Clin Med Phys ; 21(1): 95-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31943756

RESUMO

Current available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.0.3) and a secondary dose calculation was conducted. The agreement between the new calculations and the TPS were recorded and compared to the original secondary dose calculation agreement with the TPS using a Wilcoxon Signed Rank Test. Further comparisons using a Mann-Whitney test were made for targets treated at a 90° gamma angle against those treated with either a 70 or 110 gamma angle for both the new and commercial secondary dose calculation systems. Correlations between dose deviations from the treatment planning system against average target depth were evaluated using a Kendall's Tau correlation test for both programs. The Wilcoxon Signed Rank Test indicated a significant difference in the agreement between the two secondary calculations and the TPS, with a P-value < 0.0001. With respect to patients treated at nonstandard gamma angles, the new software was largely independent of patient setup, while the commercial software showed a significant dependence (P-value < 0.0001). The new secondary dose calculation software showed a moderate correlation with calculation depth, while the commercial software showed a weak correlation (Tau = -.322 and Tau = -.217 respectively). Overall, the new secondary software has better agreement with the TPS than the commercially available secondary calculation software over a range of diverse treatment geometries.


Assuntos
Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Cranianas/cirurgia , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias Cranianas/diagnóstico por imagem , Neoplasias Cranianas/patologia , Tomografia Computadorizada por Raios X/métodos
14.
J Contemp Brachytherapy ; 11(5): 399-408, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31749847

RESUMO

PURPOSE: High-dose-rate brachytherapy (HDR-BT) delivered in a single fraction as monotherapy is a potential treatment modality for low- and intermediate-risk prostate cancer (LIR-PC); however, outcome data with this technique remain limited. Here we describe our institutional HDR monotherapy experience and report the efficacy and toxicity of this treatment. MATERIAL AND METHODS: LIR-PC patients who received a definitive single fraction HDR-BT during 2013-2017 were retrospectively identified. The intended HDR monotherapy dose was 19 Gy in one fraction. Acute (< 90 days) and late (≥ 90 days) toxicity was assessed using CTCAE version 4.03. Trends in prostate-specific antigen (PSA) and American Urological Association (AUA) symptom scores after treatment were assessed using Bayesian linear mixed models. The Kaplan-Meier method was used to evaluate biochemical failure-free survival (BFFS). RESULTS: 28 patients with median follow-up of 23.6 months were identified. The median age at treatment was 65 years (48-83). The NCCN risk groups were low in 14, favorable intermediate in 10, and unfavorable intermediate in 4 patients. There were 5 (18%) and 0 (0%) acute grade 2 genitourinary (GU) and gastrointestinal (GI) toxicities, respectively, and one (4%) acute grade 3 GU toxicity. There were no late grade 3 toxicities, and 5 (18%) and 0 (0%) late grade 2 GU and GI toxicities respectively. PSA values and AUA symptom scores decreased significantly after treatment. There were 3 biochemical failures with the two- and three-year BFFS of 90.7% and 80.6%, respectively. CONCLUSIONS: Early results from a single institution suggest that single fraction HDR-BT with 19 Gy has limited toxicity, although with suboptimal biochemical control.

15.
J Appl Clin Med Phys ; 20(5): 21-26, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31055877

RESUMO

PURPOSE: Characterize the intra-fraction motion management (IFMM) system found on the Gamma Knife Icon (GKI), including spatial accuracy, latency, temporal performance, and overall effect on delivered dose. METHODS: A phantom was constructed, consisting of a three-axis translation mount, a remote motorized flipper, and a thermoplastic sphere surrounding a radiation detector. An infrared marker was placed on the translation mount secured to the flipper. The spatial accuracy of the IFMM was measured via the translation mount in all Cartesian planes. The detector was centered at the radiation focal point. A remote signal was used to move the marker out of the IFMM tolerance and pause the beam. A two-channel electrometer was used to record the signals from the detector and the flipper when motion was signaled. These signals determined the latency and temporal performance of the GKI. RESULTS: The spatial accuracy of the IFMM was found to be <0.1 mm. The measured latency was <200 ms. The dose difference with five interruptions was <0.5%. CONCLUSION: This work provides a quantitative characterization of the GKI IFMM system as required by the Nuclear Regulatory Commission. This provides a methodology for GKI users to satisfy these requirements using common laboratory equipment in lieu of a commercial solution.


Assuntos
Movimento , Neoplasias/cirurgia , Imagens de Fantasmas , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Desenho de Equipamento , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
16.
Radiol Case Rep ; 14(5): 634-638, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30923590

RESUMO

Obese patients constitute 40% of the adult population. MRIs of obese patients are typically challenging because of the effects of a large field of view on image quality and the increased risk of thermal burns from contact with the bore. In this case report, the impacts of obesity on MRI procedures and safety are introduced. Then a case is presented of a 30-year old female cervical cancer patient who received an MRI simulation to verify the placement of a titanium tandem and colpostats for brachytherapy. A large magnetic susceptibility artifact was detected near the right pelvis during the MRI scout indicating the presence of ferrous material. The source of the artifact turned out to be a disposable lighter that was stored inside the patient's pannus. The finding highlights an unanticipated risk to MRI safety and image quality associated with large body habitus.

17.
Med Phys ; 46(5): 2394-2402, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30742714

RESUMO

PURPOSE: Yttrium-90 (90 Y) microsphere radioembolization enables selective internal radiotherapy for hepatic malignancies. Currently, there is no standard postdelivery imaging and dosimetry of the microsphere distribution to verify treatment. Recent studies have reported utilizing the small positron yield of 90 Y (32 ppm) with positron emission tomography (PET) to perform treatment verification and dosimetry analysis. In this study, we validated a commercial dosimetry software, MIM SurePlan™ LiverY90 (MIM Software Inc., Cleveland, OH), for clinical use. METHODS: A MATLAB-based algorithm for 90 Y PET-based dosimetry was developed in-house and validated for the purpose of commissioning the commercial software. The algorithm is based on voxel S values and dosimetry formalism reported in MIRD Pamphlet 17. We validated the in-house algorithm to establish it as the ground truth by comparing results from a digital point phantom and a digital uniform cylinder to manual calculations. Once we validated our in-house MATLAB-based algorithm, we used it to perform acceptance testing and commissioning of the commercial dosimetry software, MIM SurePlan, which uses the same dosimetry formalism. A 0.4 cm/5% gamma test was performed on PET-derived dose maps from each algorithm of uniform digital and nonuniform physical phantoms filled with 90 Y chloride solution. Average dose (Davg ) and minimum dose to 70% (D70 ) of a given volume of interest (VOI) were compared for the digital phantom, the physical phantom, and five patient cases (27 tumor VOIs), representing different clinical scenarios. RESULTS: The gamma-pass rates were 97.26% and 97.66% for the digital and physical phantoms, respectively. The differences between Davg and D70 were 0.076% and 0.10% for the digital phantom, respectively, and <5.2% for various VOIs in the physical phantom. In the clinical cases, 96.3% of the VOIs had a difference <5% for Davg , and 88.9% of the VOIs had a difference <5% for D70 . CONCLUSIONS: Dose calculation results from MIM SurePlan were found to be in good agreement with our in-house algorithm. This indicates that MIM SurePlan performs as it should and, hence, can be deemed accepted and commissioned for clinical use for post-implant PET-based dosimetry of 90 Y radioembolization.


Assuntos
Embolização Terapêutica , Fígado/diagnóstico por imagem , Microesferas , Tomografia por Emissão de Pósitrons , Radiometria/métodos , Software , Radioisótopos de Ítrio/uso terapêutico , Humanos , Fígado/efeitos da radiação , Radioisótopos de Ítrio/química
18.
Brachytherapy ; 18(1): 108-114.e1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30385115

RESUMO

PURPOSE: To standardize and automate the high-dose-rate (HDR) brachytherapy planning quality assurance (QA) process utilizing scripting with application programming interface (API) in a commercially available treatment planning system (TPS). METHODS AND MATERIALS: Site- and applicator-dependent plan quality (PQ) evaluation criteria and plan integrity (PI) checklists were established based on published guidelines, clinical protocols, and institutional experience. User designed C# programs ("scripts") were created and executed through the API to access planning information in TPS. A set of standardized quality control reports, focusing on PQ evaluations and PI checks, were automatically generated. Information derived from the TPS was compared against predetermined QA metrics with color-coded pass/fail indicators to aid and enhance the efficiency of plan evaluation. Five independent, blinded observers reviewed mock plans with simulated errors to validate the scripts and to quantify the improvement of plan review efficiency. RESULTS: Scripts were developed for HDR prostate and breast. Forty-one parameters were reported/checked in the PI report; the PQ report returned dose-volume indices and an independent check of dwell time. All simulated errors were detected by the PI scripts with appropriate warning messages displayed, and any values failing to meet the planning constraints were red-flagged successfully in the PQ report. An average time reduction of 16 min for plan review was observed when using the scripts. CONCLUSIONS: API scripting-based automated planning QA for HDR brachytherapy including PI checks and PQ evaluations was designed and implemented. The simulated error study showed promising results in terms of error catching and efficiency improvement.


Assuntos
Braquiterapia/normas , Planejamento da Radioterapia Assistida por Computador/normas , Software , Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Lista de Checagem , Protocolos Clínicos , Guias como Assunto , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
19.
Brachytherapy ; 17(1): 40-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28869144

RESUMO

PURPOSE: The purpose of the study was to develop an optimized, efficient workflow for using the day-of-implant (DOI) CT for treatment planning of accelerated partial breast irradiation brachytherapy using the strut-adjusted volume implant (SAVI) device. METHODS AND MATERIALS: For 62 consecutive SAVI patients, a DOI CT was acquired and used for treatment planning. A "verification" CT was acquired 24-72 h after implant and immediately before the first fraction, then registered to the DOI CT. If the DOI CT-based plan was no longer optimal, a replan was performed. An array of metrics describing the geometry of the device and its relative position in the patient from the DOI CTs for these patients was collected. These metrics from the DOI CT were evaluated to determine what features could predict for the need to replan before the first treatment fraction. Logistical regression analysis including χ2 tests was used to determine if different factors correlated with replanning. RESULTS: Twenty-two of 62 patients (35%) required replanning. Only the presence of splayed struts, where splay was toward the skin, and the use of a nine strut ("8-1") SAVI were significantly correlated (p < 0.05) with replanning. Within these individual populations, no additional factors showed a significant statistical correlation for requiring replanning. CONCLUSIONS: For strut-based accelerated partial breast irradiation brachytherapy, it was feasible to treat with a plan based on the DOI CT for a majority (65%) of patients. Some factors correlate to needing replanning; recognizing these could be used to optimize treatment workflow for certain patients, increasing clinical efficiency while enhancing the quality of patient care.


Assuntos
Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Adulto , Braquiterapia/instrumentação , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Próteses e Implantes , Dosagem Radioterapêutica , Fluxo de Trabalho
20.
Brachytherapy ; 17(1): 171-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29089275

RESUMO

PURPOSE: Long-term outcome reports of accelerated partial-breast irradiation (APBI) are limited. Here, we report the 10-year outcomes of APBI delivered using multicatheter interstitial implant (ISI) brachytherapy. METHODS AND MATERIALS: Patients with early-stage breast cancer treated with APBI via ISI brachytherapy were enrolled in a prospective registry. Selection criteria included age ≥40 years, ductal carcinoma in situ or invasive tumor ≤3 cm, negative margins (≥2 mm), and negative axillary nodes. 34 Gy in 10 twice-daily fractions was administered to 2 cm of breast tissue surrounding the surgical bed. Toxicity and cosmetic outcomes were collected prospectively. RESULTS: A total of 175 patients were included. The median followup time was 10.0 years. Ten-year ipsilateral breast tumor control, regional control, freedom from distant metastasis, breast cancer-specific survival, and overall survival were 92.1%, 96.9%, 97.4%, 97.1%, and 81.2%, respectively. High-grade disease was correlated with increase in the rate of ipsilateral breast tumor recurrence. Grade 1 or 2 skin toxicity was present in 44 patients, and Grade 3 skin toxicity was present in only 1 patient. There were no Grade 4 or higher toxicities observed. Thirty-seven patients developed fat necrosis. Dose Homogeneity Index of ≤0.85 and integrated reference air-kerma of >3400 cGycm2/h correlated with higher rates of fat necrosis. There were 115 (66%), 51 (29%), 8 (5%), and 0 (0%) patients having excellent, good, fair, and poor cosmetic outcomes, respectively. CONCLUSIONS: APBI using ISI brachytherapy offers excellent clinical outcomes in appropriately selected patients with excellent cosmetic outcomes and low rates of toxicities such as symptomatic fat necrosis.


Assuntos
Braquiterapia/métodos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Recidiva Local de Neoplasia , Adulto , Idoso , Idoso de 80 Anos ou mais , Braquiterapia/efeitos adversos , Neoplasias da Mama/cirurgia , Terapia Combinada , Necrose Gordurosa/etiologia , Feminino , Humanos , Margens de Excisão , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/etiologia , Estudos Prospectivos , Radiodermite/etiologia , Dosagem Radioterapêutica , Radioterapia Adjuvante , Sistema de Registros , Taxa de Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA